If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+100x-100=0
a = 25; b = 100; c = -100;
Δ = b2-4ac
Δ = 1002-4·25·(-100)
Δ = 20000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20000}=\sqrt{10000*2}=\sqrt{10000}*\sqrt{2}=100\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100\sqrt{2}}{2*25}=\frac{-100-100\sqrt{2}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100\sqrt{2}}{2*25}=\frac{-100+100\sqrt{2}}{50} $
| 2^x^2+2x=8 | | 13+7=33-x | | (3k+5)^2-27=0 | | v+9/4=4 | | 2.8/r=70/3 | | 2^2w+2=16 | | 2x-8=66 | | -87=6n+7(n-5) | | w/3+5=8 | | (X-5)=y | | 20=8.0w | | (M+2)=2x+4 | | 3t^2+2t+7=0 | | 10=b+3+2 | | (6x+15)+(6x+15)=15x+9 | | x-4)(x-18)-(x(x-14)=0 | | 5/2x+2=3.5 | | 40x^2+10x-15=0 | | 2^x=44 | | 30=4p-8 | | 168x+54=6 | | 4m+34=10m+10 | | 20/3.4=800/y | | -16=4x+5-x | | q^2-32=-4q | | 11.6x-2.50=-11.80 | | (x+2)(x-1)=3x-4 | | t/2+4=3 | | 168x-54=6 | | 1/4(5x+16/3)-2/3(3/4*1/2)=-5 | | 13=7x+2/8+2x+3/2 | | 6x+15=15x+9 |